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an encounter is given by (4.5). 
Let inequalities (3.1) and (3.6) hold, i.e., 

a+ p1+ -T) +),y,, i_ (q--r) y - E 

We write the equation for the number s of (3.7) : 

Y = 8 + (s - T) y + p In ((q - s)r/Z) 

Then, we find from (3.9) that the law of mass variation has the form (4.5) with ~<t-<*r 
and with s<f<p, 

m(t) = m (8) ((q - t)i(q - sp, ‘% = p I / 20 I 
Knowing the conditions foran encounter with any a>O, we can find /4/ the value of the 

game, when the pay-off is the distance /z(q)/. In our example, the set Tt"(X) is not a stable 
bridge. This implies that termination of the game after the first instant of absorption /8/ 
is not possible for all initial positions, while the value of the game is not the same as the 
programmed max-min. 
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CONSTRUCTION OF MIXED STRATEGIES ON THE BASIS OF STOCHASTIC PROG~~S* 

A.N. KRASOVSKII 

The optimal control problem in the class of mixed strategies is considered, 
under the condition that the guaranteed result is minimized. An efficient 
method of constructing the optimal strategy by means of stochastic program 
synthesis is given. The results extend the theory given in /l-7/. 

1. Formulation of the problem. We consider the object described by the differen- 
tial equation 

z' = A (t) I + f (t, u, u). t,, < t < ‘@, u EP, u E I%’ tf.*) 

where t is the n-dimensional phase vector, u the r-dimensional control vector, v the s- 
dimensional noise vector, R and W are compacta, the matrix function -4 (t)and vector function 

*Prikl.Matem.ICekhan.,51,2,186-192,1987 
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f (h f-4 4 are continuous, and to and @ are fixed. 
We are given the performance factor y = 1 x[Sl 1, where Iz 1 is the Euclidean norm of X. 
Along with the object x of (1.1) we consider the model y, connected to the control organ. 

Its phase state is defined by the n-dimensional vector y[tj. 
We define a mixed strategy as a combination 

SU = {R (.), p (.); R* (.), P* (.); W* (.h Q* (.)) (1.2) 

of sets and functions 

R (.) = {R (8) = {&I E R, 1 = 1, . . ., NE}, 8 > 0)~ 

R* (.) = R (+) 
N 

P(*)={Pl(L”,LLe)> 0, &(hU.e)=l~ 

p* (.) = {PL* (t, X, Y, e) > 0, $,‘.=I1 

w* (.) = {W” (E) = {u[ml El_ w, m = 1, . ., Me)} 

~*(.)={Qm*(t,z,y,e)~O, &%*=1) 

The control law U, corresponding in the interval It,, 61 to strategy S" of (1.21, is 
defined as the combination 

U = {S"; E > 0; A {ti}}, t, E Ito, zl) (1.3) 

A {&I = {tl = t,, . . ., ti < ti+l, t;+l = 6) (1.4) 

The basic probability space {Q, F, P}. is constructed in the standard way on the basis 
of the functions p (.), p* (e), q* (e) and the properties of the random noise 

u Lt, I’1 6, -) = {v It, WI E w, t, < t < 6, 0 E 52) (1.5) 

The control law U of (1.3) jointly with the noise ~1.1 of (1.5) generates from the 
initial positions {t*, X*> and it*, Y,} random motions of the object z and of model y, which 
are found as solutions of the stepped equations 

I' It, WI = A (t) Z It, WI + f (t, U [tip 01, U [t, ml), ti < t < titl, (1.6) 
i = 1, . . .( k 

Ne,Me 

When forming the motion x It,01 in accordance with (1.6), a random test is made at each 
step at the instant ti on the choice of the vector u[ti, w] E R(e) with conditional probability 

p (u [ti, 01 = ULL1 1 Z Iti, Ul, y,lti, 01) z Pf ctit .7Z [ti Ol, Y Iti, (Olv e) 

We assume that the noise is stochastically independent of the control at each step, i.e., 

P (v It, 01 E c I x hi, 01, y [ti, 01, u Iti, wl)= 
P (V It, 01 E C I I [ti, Ol, I/ Iti, Ol) 

We define the guaranteed result for u, {t*, z*), {t*, y*} and p E 10, 1) as the quantity 

P (U; L 2*, Y,; B) = mine (1.8) 

where the values a satisfy the condition P(y = Ix[@, 01 16 a)> p for any admissible noise 
(1.5). 

For strategy s", we define the guaranteed result for {t,,r,) as the number 

p(P;t,,r,)=lim lim lim sup limsupp(U;t I y .fi) 
B-1 e-0 t-0 Iv.-x,lCt 6-o Ad 

*. ** *' 

(Ad = A {ti) is the division (1.4) with step maxi 1 ti+l- tl I<6). 

We shall call the strategy soU optimal if we have 

p (SO? t,, z*) = yjn p (8”; t,, 4 = p”(b 4 (1.9) 
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for all positions {t*, x*) f G, where G is a pre-assigned bounded closed domain which satisfies 
the condition: given any initial position {to, zr*}F G {t*, y,}EG, we have for every possible 
motion z ft, 1.19, WI, y [&j-16, wj the inclusion (f, x If, 01) E G, k I k @I} E G for all to it,, 
61,oCzS-z f/5/, P-67). The quantity p'((t,, z*) of (1.9) is the optimal guaranteed result. 

Our Problem is to evaluate p"(t,,..x,) and to construct a strategy 80%. 
We have: 

Theorem 1.1. An optimal universal strategy So1' = {So"(t, z, y, E)} exists. 
This means that, for any ?l>O and p E 10, I)., we can indicate E (11, fi)> 0, 5 (q,p, e)iO, 

S(I), @, e,Q> 0 in such a way that, for the motion s[It,[.l it, .I, generated from position 

0*, zz*}E G by control law 6'" 4 {So*; E, As}, we have the inequality 

P (is@, @ 1 I< PO @*, x*) + 71 2 P 

if E 4 8 (v, B), I!/* -x* I< 5 (11, BY E), 6 < 6 @ll B> Et CL no matter what the noise (1.5). The 
quantity p0 is the least number that satisfies this condition. Below we describe the approxi- 
mation of the function p"(t, Z) based on the method of stochastic programmed synthesis /5/, 
and on this basis we construct the strategy &". 

2. Closeness of motions of the object% and model g. Let the set R7 = (u[llE 
R, E = 1,.., N} be such that, for any u ER, there exists drl f Rq, I II - ~(~1 j <<~.~imilarly, 
W,, = {dml E W, m = 1, . . ..M} is the set such that, for any v E &', there exists u(*‘l E! Hr,, 
I u - v[ml 16; q. we form the n-dimensional vector r = s-y. Let the positions {r*, I [Tel) EG 
and {r,. y (r,l} E G be found. We construct the motion y [tl in accordance with'the equation 

!V,Al 
g‘ftl- ‘4 @)Y Ii1 + t >~pz~~? “i2zz’)pl*q,*, T*< 1 < t* (6.1) 

zL[f'E I?,, zF[*l fz Pv;, pr* _>o, ym* YPO 

we choose the sets of numbers {pl"> 0, 1 = 1, . . ..N. 

which satisfy the equations 

where r lz,l = x I%,1 - y [Z,l. 
Here and below, Idem on the right-hand side of an equation signifies 

is the same as on the left-hand side with the change of symbols indicated 

<r-f> is the scalar product. 
The set of numbers {~~'~,{~~*O~ which satisfy conditions (2.2), (2.3) r *._. . . . with fixed {Ufr'), 

choose a set {pi"} {@If, and r Ir,l = r*,, may not be unique. Given {utrJ}, {ol"J}, and r*, we 
and a set (q,,,*'}. Let the probability P(u = u [l]F R,) be equal to the numberpI"of the set _ 
{Pl", . . ., PN’), which satisfies condition (2.2). 

We introduce the function 

v (k 2, Y) = I 5 -gyzl3xp {;2h(t- to)): 

I. = ~<t=+ I A (0 I, I A (f) .I = yv$ I A (6 3 I 

Lemma 2.1. Given any s>O, there exist a(~))0 and q (e)>O such that we have the 
following claim. 

Let T* E(T,, 61 satisfy the condition r* -r+ <6(s) and Q <T)(E). The motion y [Z, [*lz*l = 
{$[t],%*<t\(r*} starts from the initial position (z,, y k,l}EG by the set (W,, &,,*O} in 
the pair with any set {u@f, &*}. Let SIT, I-l Z*, .I = {~[t, 0’1, z,<t <z*, m* EO*)be the random 
motion generated according to a scheme similar to (1.6) with ti = I*, t&l = r*,x &,C@l = x It*1 
for the chosen set {Rg,pg") and any admissible noise v[t,@*j. Then we have the inequality 

M {Y (t, 5 It, 0*1, y M)} <v (z,, 5 IZJ, y IT*]) + e*(t - 2*) 

for all t~[r,,r*]. Here, {Q*,F*,P*} is the appropriate auxiliary probability space, and 

(2.2) 

(2.3) 

an expression which 
in the parentheses; 
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M {. . .} is the expectation. 

3. Programmed extremum. We take the model w,described by the differential equation 

(3.1) 

In (3.11, the values N*,M, and sets R,,W, are fixed. Let k be a given positive 
integer. We designate the division A {T,} = {z, = z*, . . . Tj < ‘Cj+l, j = 1, . . ., k, ~k+~ = 6). With 
it we connect the random quantities {El,..., &,r), independent in aggregate, each of which is 
uniformly distributed in the half-interval O<Ej< 1. Each set {Et,. ..,&} is treated as an 
elementary event O+ in probability space(Q,, B,, P*}, where Q, = {o*} is the unit cube in k- 
dimensional space, B, is the Bore1 c-algebra for this cube, P, = (P,(B)} is the Lebesgue 
measure, BE B,. The programmed extremum (/5/, p.291) is given by the equation 

e(hw*, A (zj))= sup [<m,.X(8,r,)w,> + 
w )!lCl 

(3.2) 

Here, l(.) = {I (a*), a+ E 52,) is an n-dimensional vector random quantity, given in {a,, 
B,, P,}; X(t, t) is the fundamental matrix of solutions of the equation W’ = A (t) W. Moreover, 
in (3.2), 

II I (.)I1 = (M {I I (R+) l*)l/*, m, = M U (m*)) 

m (r, CO*) = M {I I&, . . ., El,] 1 El, . . ., !iJj9 

‘lY E hJr ~J+I) 

We introduce the quantity 

x (T*, m,) = SUP x (T,, m,, A (tj}) = SUP sup MX 
A b.Jb *(rJ) IP(9IIC(l-lm~l’)‘/‘* 

e 

is 
minmax 

t, P, ¶* < 

(m, + n(t,w*)) X 

N-9 M. 

X(6 z z 

I, ??I=1 
f (t* us”, up, * P*lQ*m> dT} 

rt (T, Cd*) = M {b 151, . . ., ‘&I [ 51, aI . ., fJ}, TJ <r < fj+l* 

(3.3) 

0n the basis of (3.2), (3.3), we construct the function (the prime denotes transposition) 

Pe(r*, y,)=- B(s, r*)(i + IX’@, ~*)m*O(~*L,~*r~)laY~~ + (3.4) 
ObO((.t*, Y*,qx(@,~*)Y*) + x(r*, meoh, Y,, E))= 
max Ideb(m,"(z,, y,,e)-t m,) 

Im,la 

fig (% z*) = 8 + 8 exp {2h (T* - to)) 

Noting that the function x(~*, m,) of (3.3) is concave with respect to m,, we can show 
that m+’ (t+,y,,e) of (3.4) is a unit vector. Hence the vector function m*O(~,,y,,e) is con- 
tinuous with respect to%', and y,, while the function @(r*,y+) of (3.4) is differentiable with 
respect to y,. Hence there exists the vector gradient 

dP'(r*, Y,MY,=X'(*, ~)m*"&. y,,a) (3.5) 

which is continuous with respect to rt and #*. 

4. Guaranteed result. We choose the set of quantities 

{pl*@, 2 = 1, . . .% Re} 

which satisfies for given r*, y,, and E > 0, the condition 

(4.1) 
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Here and below, we assume that u['l ERe, ~(~1 E We, where RE = R,, W’ y W, satisfy the 
conditions of Lemma 2.1 for the given E>O. 

We can prove the following property of u-stability. 

Lemma 4.1. Given any a>O, we can indicate E(a)> 0 and 6(a,&)> 0 such that, for 

any {r,, Y*} E G and .r* >t*, 1 T* - T* I< 6 (a, E), the set {Re,pl*@) in combination with any set 
{w',q,,,*}, generates from the position {r*,Y*} the motion Y [r*[*]r*] = {Y It], r*<<<~*}, for 

which we have the inequality 

p'! (T*, Y [r*l) d P (T*, .v*) + a.(T* - z*), 

provided that E < E (a), 6 < 6 (a, E). 

We see from this that, given any L* >O, we can find an E(<*)> 0 and s(c*, E)> 0 such 

that, if division (1.4) satisfies the condition maxi 1 ti+l - ti I< 6(5*, e), and the motion 
Y]t* [*lB,~l is constructed with steps ti < t < ti+l, in such a way that {pl*""} are chosen from 
the conditions of Lemma 4.1, and {qm*} arbitrarily then we have the inequality 

I Y 16, @I I < Pe @*, Y*) + 5* 

provided E < &(c*). 

we construct the strategy S," = W, (+), A (.); R,* (e), IA* (.); ti,* (a), qe* (.)I (1.4), which we 
shall call extremal. We use the motion Y [t,[.]6, o] of model y as a guide to the motion of 

object 2. Let R,(.), p,(.) be the rule which associates with possible values to, z', Y", and 

En > 0 the sets {u[J, p;, 1 = 1, . . ., iye}, satisfying the conditions of Lemma 2.1 for z* = 10, 

x [T*] = z', y [z,l = y”, E = E’. Further, let W,*(.), q,*(.) be the rule which designates the sets 

{u(ml, qrn*O, m = 1, . . ., ME), which satisfy the conditions of Lemma 2.1. Finally, R,* (.), pe* (.) 
is the rule which designates {u['l, Ye*", ,? = 1, . ., NC), satisfying condition (4.1). It can be 

shown that functions ps (.),p,* (.), qe*(.) can be chosen to be measurable with respect to z,y. 

For the motions x ]t, I.]S, .I and Y ]t, I.lfi, ,I, which are formed by strategy S,"in accord- 

ance with scheme (1.61, (1.7) at each step ti < t < ti+r, we have the inequality 

M (v (ti+lr z ]ti+n 01, Y ]ti+~, 01) 15 Itit 012 Y ]ti, all 6 (4.2) 
V (ti, z [tiv 01, Y [ti, WI) $ E.(ti+r -ti) 

where ~%f{... ] ...} is the conditional expectation. By the expression for repeated expectations 

(/9/, p.55) we find, by (4.2), 

M (v(&+I, r ]ti+r, 01, Y [ti+rq 01)) 4 Idem(~~+,-+ h) + &‘(h+l -b) (4.3) 

From (4.3), using Chebyshev's inequality (/9/, p.51), we obtain the following assertion. 

Given the initial position {t*, z*} E G, and any ?) > 0 andfi 6% [0,4), we can find e (rl? 
p)> 0, c(q,fl,e)> 0 , and S(q, p, E, c)> 0 such that, for every motion x[t, [.lS,.l, formed 

from position (t*, z*} by the above method with &<s (11, fi), ] Y, -r* ] < c(q,p, E) and with 

division Aa, satisfying the condition maxi 1 ti+l- ti I< 6 (~,P,E, c), we have the inequality 

p (I s[6, 01 I < PE (t*T 5*) + 11) > B (4.4) 

no matter what the noise (1.5). 

Let U, = {Seu; E; A*) be the law (1.31, corresponding to strategy S,*. Then, in accordance 

with (4.4), the guaranteed result p(u,) of (1.8) satisfies the inequality 

P(U,;t*,r*?Y*; P)dP'(t*V"*) + rl* ,(4.5) 

provided that E < E (q*,p),6 <.(q*,p,E,cJr IY, -x*Id 5(rl*,BIe). 

5. Optimal guaranteed results. We take the model z, described by an equation 

similar to (2.1) with y replaced by Z. Fle can prove a Lemma similar to Lemma 2.1 concerning 

the closeness of the motions of the object x and model z, where the sets {w,,q,,,‘,“) are chosen 

for the object, and sets {R,, pI*O) for the model. We have the property of v-stability of the 

function pe (z, {wl, . . ., wn)) = e (z, {q, . . ., w,,), A {z,}). 

Lemma 5.1. For any a> 0 we can find e(a)> 0 and 6 (a, E)> O0 such that, for any 

{r*, w*l, r* > z*, IT* -T,, 166 (C&E) and the set (p,l), there is a set {Q,,}, which in combination 

with (P&, generates from position {r*,W*) a position {r*, w[z*] = w*} such that we have the 

inequality 

if e< E (a), 6 < 6 (a, e) 
Using the motion of model z as a guide to the motion of object x, wecan find an appropri- 

ate law of formation of the noise V, for the object so that our claim holds. For any motion 
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and law v, with a suitable particular division (1.41, we shall havetheestimate 
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p (I 5 IQ, of I > Pe @*v x*1 - rl*) > B (5.1) 

for s< s (9*, p), 8 d 8 (rl*, 8, 8). 
We have the inequality 

I Pe ff*. f+) - PE @*3 %J I d * @) (5.2) 

(iim 9 (s) = 0 as E-+ 0) 
Using (4.5) and (5.2), we find that 

p(U,; t*'x** Y*;B)dPe@*,s*) -t x 

for & < F‘(xs B), 8 d 6 (x2 p; 8). 
At the same time, according to (5-l), there is no admissible law U (1.3) which can 

guarantee the inequality 

p(V; t*, X*xY& B)<Pe@*, s*) - a 

for values of fi close to unity, and a>O. 
From these inequalities we find that 

P*(t*,x*)=~~fe(t*, %) (5.3) 

and that we have the following. 

Theorem 5.1. The quantity p* (t.,z;) of (5.3) is the optimal guaranteed result p" (t,,z*) 
of (1.9) for any position {t*, q} E G. Strategy S," is the optimal strategy S," of (1.9). 

Notice in conclusion that, to evaluate %(~.,a+, A{(zj}) of (3.3) we can use the following 
procedure, which follows at once from the definition of this quantity. We evaluate the 
function 

Let the function cpn(m,) be the upper concave hull for &(n.) with Im+l<l. The further 
construction of the functions pi(m*)(i = k- i,k- 2, . ...1) is made in steps. Let the function 
cpi (m*) (i = k, . . ., 2) be constructed. We evaluate the function 

4-i(%) = 'Pi (m*) +l(ti_l, ?a) 

The function rpi_l(m,) is constructed as the upper concave 
The function gr,(m.) is equal to x (z*, me, A {zjl). This procedure 
programming problems. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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